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ON THE CALCULATION OF THE DISTRIBUTION OF HEAT LIBERATION
RATES IN NUCLEAR REACTOR COMPONENTS

: Lloyd G. Alexander
hperican Institute of Chemical ‘Enginsers

-

ABSTRACT

Knowledge of local heating rates is needed for -estimation of
operating temperatures, thermal stresses, and cooling requirements
in nuclear reactor components. Heat is liberated by the dissipaticn
of the energy of fission fragments, beta paiticles, fast neutrons,
and gamma photons. Heating rates are formulated in terms of either
neatron or gmma flux densities, the corresponding collision probabilities,
and appropriate energy transfer functions, the forms of which are derived.
Special methods of estimating the flux densities gre discussed. The dats

on the magnitudes of the various energy sources are reviewed.
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ON THE CALCULATION OF THE DISTRIBUTION OF HEAT IIBERATION
RATES IN NUCLEAR REACTOR COMPONENTS

Lloyd G,BXlexander
Oak Ridge National Laboratory

INTRODUCTION

The designer of nuclear reactors needs to kmow the local rates of
heat liberation in the various reactor components in order to estimate
temperatures, cooling requirements, thermal stresses, corrosion rates,
radiation demege anneeling rates, temperature dependant reactivity
changes, and so on. The heat liberation rates can be formilated in
terms of the local neutron and gamaa fluxes, Pn.and @y, Adntttedly,
values of these are not easily come by. Nevertheless, recent progress
in neutron and gemma particle transport theories makes it possible to
treat many systems of engineering interest. It is the purpose of this
paper to formulate the heat liberation rates and to indicate methods

of estimating the fluxes.

ENERGY SOURCES AND MODES OF LOCAL DEPOSITION OF HEAT

Heat 1s liberated in reactor components by the dissipation of the
kinetic energy of fission fragments, beta particles, gamma photons, and
neutrons. These particles, in penetrating matter, collide with elec-
trons and atomic nuclel and impart energy to them. In some collosion
processes, part of this energy is reradiated, but for the most part it
is rather repidly degraded into thermal motion of muclei and electrons

in the macroscopically-near vicinity of the collision.




Fission frégments, primary gamma photons, and neutrons result
directly from fission. Fission fragments emit beta particles and
gamms. photons during radioactive decay. Neutrons diffuse through
the reactor and generate gamma photons by inelastic collisions with,
and Ebsorptions in various nuclei. Such activated nuclei often decay,
emitting beta and gamma particles, Photons arising from all these
processes may experience many scattering collisions, losing part
of theirbenergy at each-collision.

FISSION FRAGMENT AND BETA DECAY ENERGY

According to Shepire ( 16), two and occasionally three heavy
particles result from the fission of ye35 by thermal neutrons. Hanna
( 9 ) critically examined the data as of 1950 and concluded that the
most probable value for the average kinetic energy of the fisslon
fragments, Gy, lies in the range 168 £ 5 mev per fission.

Because of their high charge, fission fragments have short ranges.
( 16)..Accordingly, their energy,Geryis dissipated, macroacopically
at the point of fission.

K, Way (21 ) estimated the en?gy released by the beta decay of
fission fragments ,GrrPs to be 7 mev per fission. Effective ranges
are of the order of 1 mm. or less in reactor materials; hence, the
beta energy is also liberated very near the point of fission.

The sum of the fission fragment and beta ray energies is thus
about 175 mev  per fission. The heat release rate is proportional
to the number of fissions per unit volume per unit time and may be

formulated as follows:
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Bere, B, (By)represents the energy dependent neutron flux-- i.e.,
total path length (cm) traversed by neutrons having energy E, (mev) per
unit volume (cm.3) per unit time (sec.) per unit energy range (mev) ,

The integration is carried over all energles; hovever, there are negligiblf,r
few neutrons having energies less tha? that corresponding to the tempera-
ture of the medium (30° C. ~0.025 ev.), or greater than 10 mev.

In *thermal® reactors, the greaf; ma jority of the ﬂux is concentrated
into a ngrrow band around the temperature of the medium. Furthermors,
the fission cross section,a}(l-;), decreases rapidly with 'increasing neu~
tron énergy. Accordingly, in thermal reactors, the integral is appro-
ximated very well by the product of the tthermal® flux (say the flux
lying between O.OS?J end 0,1 :mev) and the fission cross section evaluated
at the temperature of the medium. lLet the thermal flux be denoted by

£, (th), vhence 0.1

Py (th) = Po (En) dEn 2

) 0,025
The product of the first five qua}‘i‘:ities of Equation 1 is commonly denoted

by Zf(En), called the "macroscopic fission cross section It is the

probability, per cm. of travel, that a neutron of energy E will experience




g fission collision, and has units of fissions per neutron-cm. Using
2 ¢, Equation 2, and converting to BTU/hr.ft.3, Equation 1 takes the

form, for thermel reactors

6 = (Geg+ Greg) B3 = 270 x 1076 2 p(tk) fy (th) 3

For U23g O¢ equals 549, Taking m to be 1 gnm. U235/ cc. gives a
Z £ of 1.40 fissions/neutron-cm. At a thermal flux level, fn(th), of
1013 neutron~cm./cm.3 sec., the. heat production is about 400 watts/ecc
or 40 x 10% BYU/hr.£t.>
NEUTRON ENERGY

Nsutrons impart kinetic energy to atomic nuclei by three processes;
() absorption, (b) elastic scattering, (c) inelastic scattering.

In an absorption collision, the neutron enters and combines with the
target nucleus, forming the next higher isotope. The new nucleus is .
"knocked on", and its velocity is readily calculated from a simple momen-

tum balance.

Eye
Me—=2 ¥ E— W]
V” &
The thermal motion of the nucleus prior to the collision may be neglected,
since it is very small compared to the neutron velocities of interest.
v
Therefore,

nVn= (M+ m) VNI 4

atomic mass of neutron (mz1)

vhere

M I atomic mass of nucleus




Vn = velocity of neutron
Vy*= velocity of nucleus after collision

By definition, the kinetic energies of the nucleus and neutron are,

respectively
Eys & % (M4m) Ty 5a
= 2
B, - #'y b

Combining Equations A,and,5

En' = nEp / (M +m) 6
Defining énc as the fraction of the kinetic emergy of the incident
neutron appearing as kinetic energy of the target nucleus after a cap-

ture collision, one has

Sne = EWE, T w/(Mtm) 7
The remsinder of the neutron kinetic emergy plus the binding energy
is released in the form of a series of ‘so—called tcapture® gemms photons
of decreasing energy. The N' isotope may be radioactive, and may decay
by alpha, beta, and gemma emission. Later sections deal with heat re-
lease from these sources.
The loca] heating effect due to the capture of fast neutrons is

thus

@®
Snc En zm: (En) ¢n (Bp) aEn 8
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where Z,. is the so-called macroscopic neutron-capture cross sectlon. It
is the prébability, per unit length of travel, that a neutron will ex-
perience a capture collision, The lower limit of integration, Ey, is
chosen suffiently high that Equation 8, derived on the assumption that
the energy of the target nucleus prior to the collision is negligible

in comparison with the initial neutron energy Ep, remains valid, but

also sufficiently low that only a negligible portion of the neutron energy
remains to be transferred at energies less than E,. The choice depends
somewhat on the spectral distribution cf the fast neutron flux, but

values between 10 and 100 ev are nearly always satisfactory.

If two cr more kinds of atoms are present in the scattering medium,
the corresponding Gy, must be summed over all of these. This is possible
because the capture crcss sections, Zpe, are additive,

Both momentum and kinetic energy are conserved in elastic collisions.
The appropriate balances are most conveniently formulazted in the center-of-
mass system of coordinates. By combining these and transforming the results
to the laboratory system of coordinates, Glasstone and Edlund (5) obtain a

result that may be put into the form
2
s, - g e e st 9
where @ is the angle of scattering in the center-of-mass system., Since
kinetic energy is conserved in the collision, it follows that
EN/En =1-E/B, 10
The scattering is isotropic in the center-of-mass system, hence the

n } O %/E}/@ {EA/

N
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probabllity P(vﬁ)de that a neutron will be scettered elastically
through an angle ¢ into angle d & is related ( 5 ) to the angle
& vy

P(6)d6- = Sindde/f2 1
By definition, the average fraction gne of neug_ron energy En con-

N .
verted into target mucleus kinetic energy}i{ is given by the integral

7 E
Sne = ‘/‘(1 - B{/Eq) P(¢) 44 12
o

which leads to the simple result that
5ne = (1-&K)/2 13
2 1
vhere o = [(4-m /@en)]
The elastic collision heating rate is formulated similarly to Equation

13.

[v9)
Gne = /E‘ &\e By Ene (En) Pa (Bn)dEn 15
o

The lower limit E; 'again lies in the range 10 to 100 ev. As with Gnc,
G,e must be summed with respect to all kinds of atoms present.

If the compound nucleus formed hy the interaction of a neutron
with a target nucleus decomposes by the emlssion of another neutron,
the net result is equivalent to the scattering of the incident neutron.
Thé nucleus, however, may be left in an ex¢ited state, in which case kinetic
energy 1s not conserved and the scattering is inelastic. There is then,
for this case, no relation between the scattering angle and the energies
of the incident and scattered neutrons. Instead, with heavy (M > 40 ),
non-magic nuclei, the probability P(E,Ej,8)dE} that & neutron of
energy E, will be scattered through an energy range (B -E}) into
energy range dE'y by a nucleus of atomic mumber Z,is given by the
Weiskopf ( 7 ) formula, which may be put into the form

7




P(En,E},2)dEL = (BY/Tz) exp(-EY/T7) 16

where T7 is the so-celled "nuclear temperature® which must be determined

experimentally for each mucleus. Values are listed by Bjorklund (2) who
reports that Ty is independent of En.and E} and is a furction of only Z,
the atomic number.

The scattering is isotropic in the center-of-mass system of coordinates.
However, with heavy nuclei, it is also approximately isotropic in the labora-
tory system. Accordingly, the probability P(@) de that the neutron will be
scatted through angle @ into angle @0 is given by Equation 11, where o is
now the scattering angle in the laboratory system. Specifying En, Ej, and
0 completely determines Ey, the kinetic energy of the target nucleus (for
the case of negligible initial energy). A simple momentum balance readily

yields the relation ‘>7
B/, = M) [ 1 -2 (Y82 cos 6. <s;,/n,,ﬂ 17

By definition, the fraction é;ni of incident neutron energy En that

appears as kinetic energy Ex of the target nucleus is given by

n m
S ni(Br»2) = (En/E)P (B, BT (By,2) GE P(0)d6 18
>
0 0 .

where Znj(E,,Z) is the inelastic scattering "cross sectiom".

Substitution from Equations 11, 16, and 17 followed by integration gives

S ni (Ens2) = Zd (B 2T [(l"'ZTZ/En) - (3+277/En+2En/T7) exp(-En/Tzﬂ 19
W1 - (198a/72) oxp (En/T7)]




Equation 19 is valid only for heavy, non-magic muclei. For

light and mgic nuclei, the possible energy levels in the excited
target nucleus are more or less discrete, and accordingly the pro-
bability P(En,Eﬁ) is distributed in discrete bands which must be deter-
nmined experimentally for each nucleus ( 7 ). The data are then
applied to Equation 19 in place of Equation 16. .

For all nuclei, gni(En,Z) is a function of Epo The local heating

rate due to inelastic scattering of fast neutrons accordingly takes the

o0 .
Gni = / g ni(Ené Z)Eni-ni(gn) %(En) dF"n 20
Ey

where E, is the threshold energy for inelastic scattering. G,j must be

form

summed with respect to a1l kinds of atomic nuclei present.
ACTIVATED NUCLEI BETA DECAY ENERGY

Nuclei rendered unstable by the absorption of a neutron may emit
alpha, beta, or other particles as well as gemma photons. Beta emission
is the most common mode of decay. For a given transition, the beta
particles are emitted with energies ranging continuously from zero up
to some characteristic maximum, Ee (max) s which is the most commonly
tabulated value ( 10 ). Since the contribution to the local heating
from beta decay of activated nuclei is ususlly small compared to other
contributions, it is generally sufficiently precise ( 15 ) to take the
average electron energy to be one third E, (max). Thus, the local

heating rate due to "neutron-capture' betas becomes
24

Snepe = Zo®o) PelEn) @ JnBei(mx)/3 2




7

’

where nj is the n r of betas o characteristic energy Eei (max) emitted
2 e numh :

ih @cﬁhﬁ“ &
in theAdecay chain per neutron capture., Since isomeric transitions occur,

the nj are numbers equal to 1 or less. The decay process may proceed
through several atomic numbers. Note tha:,::zntribution from "thermal®
neutrons in Equation 21 may be large and override the contribution from
fast neutrons.
caMMA PHOTON ENERGY
Gamme photons penetrating matter exhibit three interaction processes:
(a) photoelectric effect, (b) palr production, and (c) Compton scattering.
In the first process, a photon transfers all of its energy to an
electron, which is "knocked on" and dissipates its energy in the immediate
vicinity. The probability, per unit length of travel, that a photon will
experience such a collision is denoted bVﬁ)e (Ey }. When the atom from
which the electron was ejected acquires amother electron in its place,
an x-ray of lov energy is emitted; however, about 95 per cent of these
are reabs§rbed inside the atom, and an "Auger® electron of low energy
is ejected Trom among the outer valence electrons. This electron also
dissipates its energy in the vicinity. Various other energy "dribbling"
processes may occur, but the net effect is that all of the energy of the
primery gamma photon is dissipated as heat in the vienity of the collision.
Thus the fraction 5xpe of initial gamma energy E, dissipated is unity.
Consequently, the heating rate due to photoelectric collisions of gamma

photons is given by 00
Cppe = E,Vape(E,)¢,(E,)dE, 22

where E y denotes the energy of the gamma photon, and @Y(E v ) denotes

the energy dependent gamma flux.

10




Photons having energies in excess of 1.02 mev may interact with the
coulomb field of a nueleus and produce an "electron pair®.. The probabi-
1lity, per unit length of travel, of pgir production is denoted b;.v{{pp(E _b/)‘
The resulting beta particles dissipate their kinetic energy near the
point of production. The positron ultimately combines with an electron
forming two photons having energies approximately 0.51 mev. These may
penetrate some distance from the point where the pair production occurred.

The nucleus involved in the collisjion acquires some energy also. The net

result is that (Ey - 1.02) mev of energy is dissipated at the point of
collision. Thus &7’9?’ the fraction of photon energy Ey dissipated locallys

becomes
&pp = (By- 1,02)/By ; Ep>1.02 23

The heating rate due to pair production takes the form

Q0
Cypp ""/ g;,ppEy/(pp(E;) By Ey)eE y 24
0

The lower limit is taken as zero for later convenience, but D (E)_) is
zero for Ey less than 1.02.

Compton scattering is the scattering resulting from an elastic collision

)
‘ of a photon with an electron. @{E r

fo——SE L
\@{k;

For this process, Compton derived the following relation between the

energies EI and E§, of the photon before and after collision and the

1



scattering angle J'.

25

E = 1
5y 1+Ey(1-Cos©)/0.51

Since the collision is elastic, kinetic energy is conserved, and

Ef_ = _Ex-EY - 1B 26
Ey E, By

The probability that a photon will be scattered through an angle &
into angle d-© is given by the Klein-Nishina formula ( 8 ), which

may be put into the form
PO)NO - KE /502 [(By/8Y) + B/5) - s smeao

where K is a normelization constant such that

ﬁe)ag
o]

and may be evaulated by substitutions from Equations 25 and 27 followed

1 28

by integration.
The fract,iong ‘,c(Ep of energy E)-of the indi dent photon that appears

as kinetic energy Egof the beta particle is given by

r
grc (EJ) = f (1 - E&/EX)EJP( 9)d9 29
(<]

Substitution from Equations 25, 26 and 27 yields an integral that has
not been put into a convenient algebraic form but has been evaluated
(See Equation 32et. seq.).

The energy deposition due to Compton scattering may be formulated

27




as follows

o0

Gye = Jm@)/% (Ey) Eyfy(Ey) &y 30

o

Summing the gamma heating contributions given by Equations 29, 24 and 22,

o0
Gy = j@xpy‘{pe-{-gypp/‘/ pobGyshc) Ey By (By) Ty 31
o
where the E y 's have been omitted in the parenthesis.
Substituting fron Hguation 23 and rearringing , bub, keeping in mind

*tha}l(xpp vonishes for energiss less than 1.02 mev. and that %D’Pe

is unity, gives

® o 32
Gy = (it pegfon + S pre) Eor By (By) By — | Lo02/ By (Ey)aE
0 ’ 1,02

The quantity S,«pe + /«)p 4.5}%{(; )*appearing in the left hand integral,
divided b the density of the medium, has been graphed by Snyder and Powell
(18) as a function of Ly for various materials. Their coefficient sy - Cs
is identical with the quantity in the parenthesis. It is called the energy
absorption coefficient. If the so-called "annihilation photons', resulting
from the neutrelization of the positron,are agsumed to be absorbed in the
vicinity of the point of pair production, one ma}? neglect the right-hand

integral provided the annihilation photons are not included in the gamme

flux ﬂx By ).

# Denoted elsewhere by M olEx).

13



NEUTRON FLUX DISTRIBUTION

The neutron diffusion and transport theories yield descriptions of the
spectral and spatial distributions of the neutron fluxes, fp (Ep). These
theories have been discussed exhaustively elsewhere ( 5 ) and will rot be
considered here in detail. A onme or two-group diffusion caleulation
will suffice to describe the "gross® variation of the thermal flux in many
thermal reactors with sufficient precision for heat generation calculations.
Let Pn(th,8) be the flux at some reference point in & homogeneous reactor
(sey the center), and let £ ( r ) denote a function, obtained from diffusion
theory, describing the spatial variation of By (th,z), where r denotes the

racius vector from the referemce point, such that

#y (th,r) = By (th,@) £(z) 33

By Equstion 3. it follows (using the notation of Equation 33) that

Gp (£) = Afy (th,0) £ (2) S, (th,r) 34

where A is a proportionality factor. The total heat output from the reactor

due to fission fragments, Qp, is obtained by integrating Gf(;) over the volume

of the fuel-bearing part of the core.

Q = Gy (Z) dav 35
Ve
where Vp denotes the volume of the core.

Substituting from Equation 34 and solving for 4 Pn (th,0) gives

A gy (h,0) = Qﬂ £ (z)s ¢ (th,z) 4V 36
£




A

Putting this back into Equation 34 gives

Ge () = Q £ (p) 2 ¢ (thp) /[ £(£)Z p(th,r) av 37
f

The energy available from fission -éragments (kinetic and beta decay)
is about 175 mev. per fission. The total energy per fisslon is ebout 200 mev.
Thus Qp is about 87 per cent of Qp, the total reactor heat output. The bal-
ance of Qt is generated by fission gammas (8 mev),fission fragment decay
gammas (6 mev), fast neutrons (5 mev), capture gammas and decay betas (7 mev).
The particles bearing this energy.(about 25 mev) tend to leak out of the fuel-
bearing core. A goodly portion of their energy is released in the coolant,
reflector, thermal shield, pressure shell, and biological shield. However,
in designing the fuel-bearing core, it is sufficient end conservative to
assume thet all of the reactor heat; Qi,of a homogeneous resctor is released
in the fuel, and that it has the same spatial distribution as Qr.

The function £ (z) has been evaluated by Glasstone and Edlund ( 5 )
for certain bare, homogeneous, thermel reactors of simple shape, with < ¢(th,Y)

uniform.

Table 1
Geometry £(z) Go/Gav
Sphere of radius R Sin (7r/R)/(mrr/R) 3.29
Cube of side A Cos{7+x/4) Cosliry/A) Cosrra/h)  3.64
Right cylinder of radius R  J,(2.405r/R)Cos(ir z/2R) 3.87
15




By integrating the given furctions over the corresponding geometric
forms, the ratio,of the maximum heat release rabej Gyy to'the average . i -
rate, Gy 4is readily dtained. Values are listed in Table 1, The presence of
moderating reflectors, control elements, structural materials, coolants,
ducts, and non-uniform loading (variable EZf) modify these simple distri-
butions. Space does not permit treastment ogjigése effects, but it is impor-
tant to reduce GO/Gav so that a larger fraction of the core may operate {
at or near the limiting conditions and burn-up of nuclear fuel and accom-
panying effects will be more uniform.

Glasstone and Edlund point out that the functions Jo(x) and (8in x)/x

. are rather similar to Cos X, and to a good first approximation may be
replaced by Cos x.

In order to increase resonance escape in low enrichment uranium reactors,
the fuel is sometimes segregated from the moderator. Fast neutrons, released
by fission in the fuel, have a high orobability of escaping into the modera-
tor where they are quickly slowed down without exposure to resonance absorp-
tion in U238, In the ORNL Graphite Reactor, this result is achieved by using

metallic fuel rods about 1 inch in diameter arranged in an & inch square

array in a matrix of graphite. The fuel has negligible moderating proper-
ties; neutrons are "thermalized" almost entirely in the graphite and dif-

fuse thence back into the fuel, there causing further fissions. As a re-
sult, there is a lecal gradient im the flux density both in the moderator
and in the fuel superimposed on the gross fluk of Eq. 33. Some reactors,
which are heterogeneous from a phase standpoint; such as the MIR, are

really homogeneous from a nuclear standpoint, there being negligible gradients

in the neutron flux in the moderator and fuel.

18




Neutron diffusion theory may be employed in the calculation of thermal.
flux distributionsin fuel elements in heterogeneous reactors. The basic
equation is ( 5 )

DY, (th) - =2, (thr) -+ Sp(th,z) = 9p/dt 38

where n is the pumber of thermal neutrons per cec., Sp is the volume-source

of thermal neutrons (due to slowing down of fast neutrons) in neutrons per
cc. per second, D is the neutron diffusion coefficient,iza is the neutron
absorption coefficinet (the so-called "macroscopic! absorption cross section),
and t denotes time. In the steady state,?zy’at is zero; in the fuel, Sn is
zero, The solution, in polar coordinates (corresponding to the case of an

infinitely long fuel rod immersed in a uniform external flux), is

2, (th,x) = BIO[V‘ (=,/m%] 39
where T 1s the distance from the axis of the fuel rod and B is an arbi-
trary constant whose magnitude is proportional to the power level at which
the reactor is operating and which may be evaluated by multiplying the gross
flux distribution, £(xr) of Equation 33, by the local variation ff (thyr) and
procseding through thé operations indicated in Eguatiohs 34,35, andi86 to
evaluate the product ABfh(th,0) in terms of' Qps

It is customary, and conservative practice, to assume that u11 of the
fission energy (200 mev per fission) is released in the fuel, even though
the fast neutrons and a significant fraction of the fission gemmas and
fission-fragment decay gemmas release their energy elsewhere. In estimating
heat release in moderator, coolants, pressure shells, and shields however,
it is necessery to estimate these leakages from the fuel rather precisely.

A fair estimate of the fast neutron spectral distribution may be had from

17



the Fermi age treatment ( 5.) of simple models; e.g., an infinite, hetero-
geneous matrix with negligible capture of fast neutrons in U235 and U238

and only weask capture in the moderator. It is also assumed that the flux

of uncollided neutrons from fission is uniform throughout the moderator.

Alternatively, the Monte-Carlo technique ( 17 ) permits treatment
of the spatial variation of the fast flux for the case of strong
absorption in fuel, moderator, end control elements, and leakage out of
the reactor, provided the fissioﬂ rate density in the fuel can be esti-
mated by some means, e.g., by a multi-group diffusion calculation on a
Yhomogenized" model of the core. In the Monte-Carlo method, the events
in a neutron "life history®™ are selected hy sampling from a teble of ran-
dom numbers. Initial neutron energies are selected from the fission neutron
spectral distribution, a flight direction is established, the coordinates of
the first collision are found, kind of nucleus and type of collision is
selected, post:géllision'neutron energy, and new flight direction are
determined. The history is followed until the neutron is absorbed or
leaks out of the reactor. The process is repeated until a sufficiently
large mumber of cases has been obtained to permit a statistical ahplysis
to obtain the fast flux spatial and spectral distribution,

The technique is applicable to the calculation of fast fluxes in
moderator, core vessels, shields, reflectors, thermal shields, pressure
shells, biological shields, etc. Unless simplifications are introduced,
especially geometric symmetries, an excessive number of histories may be

required, even though an electronic computer is used.

18




GAMMA RAY FLUX DENSITY DISTRIBUTIONS

Compton scattering greatly complicates the estimation of gamma
flux densities. The process is not isotropic (Equation 27), and the
energy decrement of the scattered photon is strongly dependant on the
scattering angle (Equation 2). Photons scattered through small angles
retain most of their original ernergy end msy penetrate to remote regions
of the reactor. Photons acattered through larger angles suffer large
energy losses, and their penetrating power is greatly reduced.

The important gamma sources are the primary gamma sources (the
fission process, the decay of fission fragments, neutron captures,
inelastic scattering collisions of neutrons) and the secondary source
(Compton scattering of photons). At many points of interest, indeed,
at]most, the contribution to the gamma flux made by scattered photons
is meny times greater than that of unscattered photons.

In principle, the gamma flux may be constructed by integration
over the gamma sources. Let r denote the vector coordinates of a
point in the reactor, and let s (Ey, ) denote the gamma flux den-
sity in photon-cm. per second per cc. per mev. lLet r! denote another
point in the reactor, let a volume increment about ' be denoted by
dv', and let the gamma source strength in photoms per second per cc.
at ' be denoted by Sy (£"). ILet P(Ey ,r') be the conditional pro-
bability, per mev.,that a photon will be emitted fromsor scattered
out of dV' with energy Ey. Iet P(z', r) be the probability, per
steradian, that the photon will be emitted in the direction of r.

The probability, per cm. of travel, that a photon will be removed
from the beam, denoted bq/é(t (E%L is simply the sum of the proba-
bilities of the photoelectric,pair production, and Compton scattering

processes.

19




Ve Ey) = five (Eg)-i-/ﬂﬂ(ﬁy)-;-/tg (Ey) 40

The probability, P(R'~9 r), that a photon will arrive uncollided at
r is thus simply ( in homogeneous, isotropic media)

Pp'le—a1) = exp [_/% E ()2 - z!)j L
where [p' - £} denotes the scalar distance between rland p. It
follows that »

Py By ) = [ 8y (&) P(By,r')dV'P(z},L) exp D«,(Eg) (t;'-:.ﬂlﬁ

v
The primary gamma sources are isotropic, and for these P(r',r)

has the value 1/47-per steradian. In the case of the secondary gamma
source, P(®,r) is a complicated function of the "directed" gamma flux
Py (Ey ,K, r'), which is defined as the garma flux at ' contributed
by photons of energy E movirg in the direction—_fT- . It has units of
neutron~-cm. per second per cc. per mev per steradian. Thus the
construction of the flux P (Exy , r) at r requires a knowledge of the
more complicated flux By (Ey ,-K— , ') everywhere else. Consequently,
a general formulation of Py (Ey, r) does not seem feasible.

The Monte-Carlo technique may be applied to this problem (14 ).
Suppose the histories of sufficient primary photons of energy E' ape
determined to define F (E'; p'-» ), the average fraction of the
energy E!' of photons originating :f ! that is dissipated at ¢
per cc. The heating rate is now readily formilated as follows.

a
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vhere pr.(;') is the primary gams source strength.

In principle, F(E};r"—» 1) may be evaluated for any case howsoever
complicated in geometry or heterogeneity, but the sheer magnitude of the
computational lebor nay render the method impractical. The simplest
case is that of an infinite, homogeneous, isotropic medium. Life
histories are generated in the usual manner and an account is kept of
the radial distance of each collision from the point of origin and
the amount of energy deposited. From these data it is easy to calcu-
late the fraction f£(E',R) dR of the energy E' of the original photons
that is released inside a spherical annulus of radius R and thickness
dR. The volume of such an annulus is 41rR2dR, from which it follows
that F(E';z'-»r) is given by

F(E'sr'e»p) = e Gz - 2]
EE Lar Clz' - o< i

A brillisnt, analytical solution of the foregoing ease has been
obtained by Goldstein and Wilkins ( 6 ) along lines laid down by
Spenser and Fano ( 19 ). Briefly, the method consists in expanding
the directed flux, P, (E,.,E{ ,I)s in a series the terms of which are
products of Laguerre and Legendre polynomials. The directed flux is
integrated with respect to all directions to remove the angular depen—
dency, multiplied by the distance from the origin raised to integral
powers, and the product is integrated over all space to eliminate the
spatial dependency. The integration yields the so-called "moments" of
the flux, which are used to evaluate the arbitrary coefficients in the

original series in the usual way by application of the boundary



conditions and utilization of the orthogonal properties of the Legendre
polynomial. Having constructed the flux fy(E"y, ) due to a ﬁonoenergetic,
unit, point source (one photon per second of energy E') at g', Goldstein
then computes the fraction of the energy E' released at p. This, of
course, is identical with F(E‘r, L' —» r) defined above, The results

are reported in terms of an "energy absorption build up factorg

B, (Eo’ {, r), where E, is E' in the notation used here,/lo is/“t(E'),

r is ([;' - ;[) , and where By is defined in such a way that

P D) = gl s (2 el AGNG - 2] 45

wher% is the energy deposition coefficient defined in Equation 32.
Values of By &8s & function of ES' and IZ' - ;l are tabulated for a variety
of materials by Goldstein ( 6 ), Taylor ( 20 ) has proposed an empiri-
cal correlation exponentisl in p' - p which is conveniently applied to
problems in gamma heating in pressure shells and thermal shields ( 1).

Conceivably, the function F(E',fr' -~ rijcould be evaluated experi-
mentally. Small radiation sources of various energies could be moved
about in a mock-up of the system under study and the heat liberation
at various points of interest measured. If a direct thermal measurement
is made, the measuring instrument would have to be extremely sensitive
or else the radiation source strength would have to be inconveniently
large. If an electronic measurement is made, the spectral distribution
of the gamma flux would have to be measured in order that the heating
might be computed by Equation 43.

The mathematical difficulties in estimating gamma heating may be

considerably reduced, albeit at an unknown cost in accuracy, if one is
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willing to utilize the straight-ahead scattering approximation, investigated
carefully by Hurwitz, et al. (11). The assumption is made that photons
suffer energy degradations according to Equations 25 and 27, but that the
scattered photons fall into one of two classes: (a) photons scattered
throughAsuch small angles that the deviations from the line of flight may
be ignored, and (b) photons scattered through such large angles that the
resulting low-energy photons have little penetrating power (high pt) and
are absorbed near the point where they suffered the scattering. These
agsumptions depend upon the following arguments: (a) the energy distribution
of the seattered photons shows a strong forward component, (b) the angular
distribution also shows a strong forward component, (c) distances of interest
in heat generation calculations are measured in relatively few attenuation
lengths from the primary source, and the probability that a photon will
suffer many scatterings is small, (d) photoelectric absorption increases
strongly with decreasing photon energy, For example, of the photons
scattered out a beam of 6 mev photons, those scattered through angles less
than 50 degress carry 90 per cent of the energy of all the scattered photons.
The approximation is applied by breaking the gamma source spectrum
into a number of energy groups. The group having the highest energy Ep is
attenuated between r' and r by the simple exponental factor
exp [}pt(Ei)(L;' -zl ]. The next group loses photons in proportion
to (Eé), but gains photons from group 1 by Compton scattering., Group 3
receives photons from both groups 1 and 2, and so on. The transfer

of photons between groups is a function of the energy-widths of the
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groups and their separation in energy, and is computed from the Klein-
Nishina relation (Equation 27), The differentlal equations expressing
the photon "economy" for each group are integrated successively, giving
the flux at r.

Hurwitz, using this multi-group technique, has calculated the energy
release ar r due to an energy-distributed source at p' having a typical
spectrun and found that the results could be expressed in terms of an
average "effective" gamma absorption coefficient,/_(e}f (E—r), obtained

by averagl%ff over the spectrum of the source

/eff E Y ‘/é s¢ (BPP(E}) dBL 46

where P(E') is the spectral distribution and where

/Qeff(E'w = & (=) + /g EY 47

Here AY}, is a term added to the energy deposition coefficient, to

account for the energy release due to gamma photons scattered to
energies below 0.25 mev, which are assumed to be absorbed in the near
vicinity of their scattering. It is evaluated by integrating the
scattered energy ratio: EJ /Ergiven by Equation 25 with respect to the
angular probability given by Equation 27 as follows:
O(E'= 0.25)
e ® = | G/ ae 48

g=o0
Hurwitz's results may be put in the form, using the present notation,

o = [ Syl av Bz, B 9’“’%1'(5')(!:‘-:\3’
v 4rCiet - od?
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PRIMARY GAMMA SOURCES
The fission gamma and fission fragment decay gamme sources are both

proportional to the fission density in stationary fuel reactors.

Spy(g') = W ﬂn(Enﬂ')Z‘f(En,z') dEp 50

o
where Ny is the number of photons, fission or decay as the case may

¥, emitted per fission. Gamble ( 4 ) reports that 7.5 prompt gamma
photons are released per fission, that these have an average energy of
about 1 mev, each, and that their spectral distribution is approximately
exponential,

PEy)= exp( - Ey) 51

This relation does not hold at the extremes of the energy range; however,
the contribution from photons with energy above ten mev, is negligible,
while gammas emitted with energies less than 0,1 mevs carry less than
one per cent of the total emergy,
The fission fragment decay gamma spectrum may be constructed from
a knowledge of the fission yields of the various nuclides and their decay _
schemes, Moteff ( 13 ) has tabulated these data for some nuclides which
have appreciable fission yields, which emit gammas with energies in excess
of 0.04 mev,, and which have half-lifes in excess of 30 seconds. Several
other radioactive fission products are known, and it seems likely that
considerable gamma energy is radiated by nuclides having half-lifes
lying between Gamble's "prompt" period {@.4 microseconds) and those
which have been observed, In all, about 6 mev. is released per fisston(21).
The situation is fairly satisfactory with respect to data on the

spectrum of the capture gamma rays emitted by a nucleus in returning




to the ground state following absorption of a neutron. Mittleman ( 12 )

has tabulated the information available as of October, 1953. The strength

of this gamme source is proportional to the local neutron flux and to the

capture coefficient 7;. Equation 50 may be used by replacinglzf byé?;,
Hardly any data are available on the spectrum of gamma rays emitted fol-

Jowing the fast neutron inelastic collisions. Grace, eb al. (7 )

report some measurements on the scattering of 2.5 mev neutrong,

Blizard ( 3 ) states that it may be possible to predict these spectra

in the same way that spectra of ordinary gamma emitters are predicted

( 8 ), but nothing seems to have been published on this.

CONCLUSION

The local rates of heat release in nuclear reactors have been for-
milated in terms of the local neutron and gamma fluxes, Certain special
methods of estimating these fluxes were indicated and their application

to the heating problem discussed briefly.




REFERENCES

1, Alexander, k. G,

"Application of the NDA build-up factors to the calculation of capture

garma heating in a reactor pressure vessel,"™
ORNI -CF-55-4~140(1955)
2. Bjorklund, F, E,
IRL~84(1954), Classified,

°

3

°

Blizard, E, P,y and Maienschein, ¥, C,
RH-1, p.741(1953), Classified,

4o Gamble, R,
Private communication, 1955,

5. Glasstone, S, and Edlund, M,
"Elements of Nuclear Reactor Theory™
D. Van Nostrand, N,Y.(1952)

o
5

Goldstein, H, and Wilkins, J, E,
"Calculations of the penetrations of gamma rays.™
NY0-3075(1954)

7. Grace, M, A, et al.
"Inelastic scattering of fast neutrons."
Phys. Rev. 82, 969(51)

8, Halliday, D.
*Introductory Nuclear Fhysics®
Wiley, N, Y,(1950)

9. Ha.nna, G, C,
CRR-/29(1951), Classified,

10, Hollander, J, B, et al.
RH-1, po194(1953)

11, Hurwitz, H.; Jr.; et al.
KAPL-753(1952), Classified,

12, Mittleman, P,
"Gamma rays resultigg from thermal neutron capture.®
NDA-10-99(1953) ’

13, Moteff, J,
"Fission product decay gamma energy spectrum.?
APEX-134(1953)

1. National Bureau of Standards
"Monte Carla Method®
N.B.S, 4pp. Math, Ser,.=12,

15, Pomeranee, H, .
Private commmication, 1955,




16, Shapiro, M, M,
RH-T, p.72(1953) Classified.

17. Shor, So- W. Wo
"Nuclear shielding studies, V, Computation of radiation shield thickness

by the Monte Carlo method,"™
NP-1361(1950)

18, Snyder, W, 8,, and Powsell, J, L,
" Gummer Shielding Session'.
(RNI-421, Supp.1(1952)

19, Spenser, L, V, and Fano, U,
WPenetration and Diffusion of X-Rays".

Fhys. Rev. 81, 464L(1951) ‘
20, Taylor, J. J,

napplication of gama rey buildeup data to shield design, " 1

WAPD-RM—217(1954§

21, Way, K, .
MonP-192(19/46) Classified,

28



